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1. Introduction

The intersection of Artificial Intelligence (AI) and mathematics has emerged as a dynamic and rapidly expanding field,
often referred to as Al for Mathematics (Al4Math). Within this domain, the application of LLMs has garnered considerable
attention, initially focusing on intuitive or informal mathematics. However, there is a growing recognition of the potential
of LLMs to contribute to the more rigorous realm of formal mathematics, where the emphasis is on the machine-verifiable
correctness of proofs. As mathematical problems become increasingly complex, the need for advanced tools that can aid
in verification and facilitate collaboration becomes critical, positioning formal languages as a potentially transformative
technology for the future of mathematical research.

But why should we care? Despite being relatively young, the project has already lead to big breakthroughs. One notable
example is the ambitious project to formalize the proof of Fermat’s last theorem. While working on the formalization, an
error was spotted in a section of an old proof that forms the foundations of crystalline cohomology. The author appeared to
have forgotten a symbol between one line and another, invalidating the proof [1].

2. Lean

Developed at Microsoft Research starting in 2013, Lean ! is an open-source proof assistant and programming language

designed for formal, machine-checkable mathematics. It is supported and advanced by an active global community of math-
ematicians. A proof assistant is a software tool designed to help users write, check, and verify mathematical proofs through
formal logic and computation. Lean provides the underlying language and logical framework. Built upon the principles
of dependent type theory and supported by an extensive mathematical library known as Mathlib, Lean provides a robust
platform for exploring the capabilities of LLMs in the context of formal mathematics.

3. Mathlib

Mathlib? is a comprehensive library of formal mathematical definitions, theorems, and proofs, spanning many areas of
mathematics (algebra, analysis, topology, number theory, category theory, geometry, logic, etc.). It is a community-diven
project that contains the formalization of a vast range of mathematical knowledge, from undergraduate curriculum to cutting-
edge research. Its current size exceeds 1.5 million lines of code encompassing over 165k theorems and 85k definitions, and
represents an invaluable resource for mathematicians and researchers seeking to ensure the rigor and correctness of their
work. For context, figure 1 provides a simple example of a theorem formalized in Lean 4.

4. The Project

Among the various potential projects at the intersection of Al and formal mathematics, the development of an advanced
semantic search engine for Mathlib presents arguably the safest yet most promising direction for this course. This claim is
motivated by a significant and frequently expressed need within the Lean community® for more effective tools to navigate
the vast Mathlib library. According to community feedback, existing search methods often prove inadequate, struggling to
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import MIL.Common
import Mathlib.Data.Real.Basic

theorem mul_comm_assoc (a b c : R) : ¢ b xa=Db *x (a x c) := by
rewrite [mul_comm c Db]
rewrite [mul_assoc]
rewrite [mul_comm c a]

Figure 1. Example of Lean code. Proof that for any three real numbers a, b, ¢ the product of (a * b) * ¢ = a * (b * c). It starts by stating
the theorem, then, the rewrite is employed to apply the commutativity of multiplication (mul_comm) to a and b and associativity of
multiplication (mul_assoc) to a and ¢, and finally commutativity again to obtain the theorem statement and finalize the proof.

capture the semantic nuances of mathematical queries and thus hindering efficient knowledge discovery. Therefore, building
a superior search tool directly addresses a clear gap and offers a high-impact contribution.

Beyond the development of a semantic search engine, if the students involved in this project show sufficient motivation
and and some prior experience with foundation models and RL techniques, we can also explore more advanced research
directions. These could include investigating the application of LLMs for tactic suggestion within the Lean environment
tackling the complex task of autoformalization — translating informal mathematics into Lean’s formal language or even
venturing into the realm of automated theorem proving by leveraging reinforcement learning techniques to guide the proof
search process within Lean.

4.1. A Semantic Search Engine for Mathlib

The sheer scale and complexity of Mathlib present a significant challenge for users, both newcomers and experienced for-
malizers, when trying to locate specific theorems, definitions, or proofs relevant to their current task. Often, users must rely
on familiarity with naming conventions, browsing through module structures, or resorting to keyword-based searches within
the codebase, which can be inefficient and may not always yield the most semantically relevant results. This difficulty in nav-
igating the library can hinder the process of mathematical formalization, potentially slowing down research and increasing
the learning curve for individuals new to Lean. To address this critical need, we propose the development of an intelligent
search engine specifically designed for the Lean theorem prover and its Mathlib library. The goal of this research project
is to create a tool that allows users to efficiently search for mathematical knowledge within Mathlib using natural language
queries or even by providing a snippet of a proof state. Such a tool would be invaluable to the Lean community, significantly
enhancing productivity, facilitating knowledge discovery, and lowering the barrier to entry for new users.

This research will focus on leveraging state-of-the-art information retrieval techniques, particularly those involving LLMs [2],
to build a semantic search engine capable of understanding the intent behind user queries and retrieving the most relevant
mathematical entities from Mathlib. We aim to improve upon existing efforts in this direction, primarily [3] and [4] by
exploring advanced embedding models and search strategies that can effectively capture the nuanced relationships between
mathematical concepts as expressed in the Lean formal language. Furthermore, a key requirement for the proposed search
engine is its ability to run locally on the user’s machine, directly interacting with the version of Mathlib installed in their Lean
environment. This local operation ensures seamless integration with the user’s workflow and eliminates the need for external
network dependencies.

4.2. Beyond the Search Engine: Al for Formal Mathematics

This project proposal primarily focuses on developing an advanced semantic search engine for Mathlib, with the possibility
for exploring more advanced, high-risk-high-reward research directions, contingent on students’ motivation and experience.
The possibilities are many. Here I outline the most popular ones for which benchmarks already exist in the literature. For a
complete survey on Al for formal mathematical reasoning see [5].

Autoformalization Autoformalization is the task of converting informal mathematical statements and proofs written in
natural language into formal languages like Lean, is a fundamental prerequisite for effectively utilizing LLMs in formal
mathematics. Several research initiatives have concentrated on creating datasets and benchmarks specifically designed to
assess the autoformalization capabilities of LLMs within the Lean ecosystem. The FormL4 benchmark [6], for instance, is



specifically tailored for evaluating autoformalization in Lean 4, addressing the challenges arising from the language’s ongo-
ing evolution and its relatively limited presence in existing training datasets. In a related effort, an evaluation benchmark was
introduced to test the performance of state-of-the-art LLMs, including GPT-3.5, GPT-4, and Gemini Pro, on their ability to
autoformalize mathematical statements into Lean 4. The findings revealed that even these advanced models still face limita-
tions when dealing with more complex areas of mathematics. TheoremLlama [7] represents another significant contribution,
proposing an end-to-end framework aimed at training a general-purpose LLM to achieve expertise in Lean 4, which includes
methods for generating datasets aligned with both natural and formal language.

Tactic suggestion Another key application of LLMs in formal mathematics involves their integration within the Lean
environment to provide suggestions for the next steps in a proof, known as tactics. The goal of this integration is to make the
process of developing formal proofs more accessible and efficient for users . Several tools have been developed to facilitate
this, including Lean Copilot and LLMSTEP [8], which allow users to harness the power of LLMs for tactic suggestions
directly within their Lean development environment. Lean Copilot [9] is a comprehensive framework that enables running
LLM inference natively within Lean, offering functionalities not only for tactic suggestion but also for proof search and
premise selection. LLMSTEP, on the other hand, functions as a Lean 4 tactic that sends the current proof state to a server
hosting a language model, which then generates potential next tactics that are subsequently checked for validity by Lean.

Reinforcement Learning for Formal Mathematics Reinforcement learning [10] is increasingly being explored as a
promising paradigm for training LLMs to tackle the complex task of formal theorem proving within the Lean environment. In
this context, the verification outcomes provided by the proof assistant can serve as a robust reward signal, guiding the learning
process of the LLM. ABEL [ 1] is a notable example of a scalable and efficient online RL framework specifically designed
for theorem proving in Lean. It has demonstrated near state-of-the-art performance while requiring only a limited amount of
training data, utilizing techniques such as hypertree proof search (HTPS) [12] and AlphaZero-style tree search [13]. LeanLis-
tener [14] is another framework that employs feedback directly from Lean within a reinforcement learning loop to optimize
the generation of tactics. OpenAl has also contributed to this area by releasing lean-gym [15], a reinforcement learning
environment built upon the Lean theorem prover. Furthermore, Proof Decomposer (ProD) represents an RL-based approach
that encourages LLMs to adopt a strategy similar to human mathematicians by decomposing a given theorem into smaller,
more manageable lemmas, proving these lemmas, and subsequently using them to prove the original theorem .

The integration of RL with Lean provides a powerful training environment for LLMs because the correctness of their actions,
in this case, the application of tactics, can be directly and unambiguously verified by the Lean proof assistant. This direct
verification yields a strong and well-defined reward signal for the learning process. This is a significant advantage over
traditional language modeling approaches, where the notion of correctness is often more implicit or challenging to define
precisely. Frameworks like ABEL showcase the potential of RL to achieve high levels of performance in automated theorem
proving while requiring significantly less training data compared to purely supervised learning methods. This suggests that
RL may offer a more data-efficient pathway to training these complex models. The interactive nature of reinforcement
learning, where an agent learns through a process of trial and error and receives immediate feedback from the environment,
can be particularly effective for mastering intricate tasks like theorem proving, potentially overcoming the data scarcity
challenges that are prevalent in this domain.

5. Conclusions

In conclusion, this research addresses a clearly identified need within the formal mathematics community. current approaches
are often considered insufficient by practitioners, particularly those working with advanced proof assistants like lean, indicat-
ing a significant gap and opportunity for impactful innovation. the successful development of the proposed methods promises
substantial contributions, advancing a field recognized by leading researchers.

Furthermore, the intersection of formal mathematics and artificial intelligence is rapidly emerging as a frontier with trans-
formative potential. methodologies such as reinforcement learning are poised to be particularly relevant, especially as we
strive to develop systems capable of tackling mathematical complexities beyond current human limits. achieving this goal
necessitates moving beyond paradigms reliant solely on human-generated data, making the exploration proposed herein both
timely and critical for future progress in automated reasoning and mathematical discovery.



To conclude, let me add that many notable researchers in the field of Mathematics, such as Terence Tao* 5 have already
expressed themselves very positively about this research direction. Big tech companies such as Google, Meta, AWS and
OpenAl have all started working on mathematical reasoning. Let’s jump on that train!
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